OLLECTIVE VISUAL SENSING

Temporal Localization and Spatial Segmentation of Joint Attention in Multiple First-Person Videos

Yifei Huang, Minije Cai, Hiroshi Kera, Rvo Yonetani, Keita Higuchi and Yoichi Sato The University of Tokyo

Goal

JST CREST Project

Discovering objects of joint attention using multiple firstperson videos (FPVs) with points of gaze (PoG) data

Task

- > Temporally localize time intervals of joint attention
- > Spatially segment the object of joint attention

Input: multiple FPVs with PoG data

Output: Joint attention states and object segmentation

Dataset

- > 24 pairs of egocentric videos with gaze data (20 ~ 60 secs)
- > 5 different environments, 20+ different objects
- > Annotation of joint attention period & object segments

Problem Formulation

Given gaze position \boldsymbol{G} , we aim to infer joint attention state \boldsymbol{J} and segment the object of joint attention (S), by minimizing the objective function:

$$\Psi(S^{(1)}, S^{(2)}|G^{(1)}, G^{(2)}) = \sum_{p \in \{1,2\}} \Psi_{GO}(S^{(p)}|G^{(p)}) + \sum_{p \in \{1,2\}} \Psi_{TS}(S^{(p)}) + \Psi_{JA}(J, S^{(1)}, S^{(2)}|G^{(1)}, G^{(2)}) + \Psi_{TJ}(J)$$

Gaze proximity and objectness

$$\Psi_{GO} \left(S^{(p)} \middle| G^{(p)} \right) = \sum_{t=1}^{T} \left(\lambda_{GO1} \frac{\left\| \mathcal{C}(s_{t}^{(p)}) - g_{t}^{(p)} \right\|_{2}}{\left| s_{t}^{(p)} \right|^{\frac{1}{2}}} + \lambda_{GO2} \left(1 - \frac{\left| s_{t}^{(p)} \middle| \right|}{\left| H(s_{t}^{(p)}) \middle| \right|} \right) \right),$$

 $C\left(s_{t}^{(p)}\right)$: Centroid of segment $s_{t}^{(p)}$, $\left|H\left(s_{t}^{(p)}\right)\right|$: Area of convex hull of $s_{t}^{(p)}$

Temporal consistency of segments

$$\Psi_{TS}(S^{(p)}) = \lambda_{TS} \sum_{t=1}^{T-1} (1 - f_{sim}(s_t^{(p)}, s_{t+1}^{(p)}))$$

 f_{sim} : cosine similarity of features extracted from segments

Joint attentionness

$$\Psi_{JA}\big(J,S^{(1)},S^{(2)}\big|G^{(1)},G^{(2)}\big) = \sum_{t=1}^{T} (\lambda_{JA1} Y\left(j_t,s_t^{(1)},s_t^{(2)},\boldsymbol{g}_t^{(1)},\boldsymbol{g}_t^{(2)}\right) + \lambda_{JA2} Z(j_t))$$

Y measures visual similarity of segments:

$$Y\left(j_{t}, s_{t}^{(1)}, s_{t}^{(2)}, \boldsymbol{g}_{t}^{(1)}, \boldsymbol{g}_{t}^{(2)}\right) = j_{t}\left(1 - f_{sim}\left(s_{t}^{(1)}, s_{t}^{(2)}\right)\right) + (1 - j_{t})\alpha\left(\boldsymbol{g}_{t}^{(1)}, \boldsymbol{g}_{t}^{(2)}\right)$$

 α computes visual similarities around gaze region like [1]

$$Z(j_t) = \begin{cases} j_t, magnitude \ of \ global \ motion > \delta_m \\ 0, otherwise \end{cases}$$

Temporal consistency of joint attention

$$\Psi_{TJ}(J) = \lambda_{TJ} \sum_{t=1}^{T-1} |j_t - j_{t+1}|$$

[1] Kera et. al. CVPRW2016

Experiment

Spatial segmentation task

Method	FtF-large	FtF-small	SbS-large	SbS-small	Avg.	
ObMiC [2]	0.287	0.212	0.065	0.336	0.225	
Baselinel	0.552	0.599	0.681	0.691	0.631	
Baseline2	0.611	0.629	0.723	0.726	0.672	
Ours	0.633	0.660	0.730	0.735	0.690	

Temporal localization task

Method	PtF-large (%)		FtF-small (%)				SbS-small (%)		
	P	R	P	R	P	R	P	R	F1 score
Kera et al. [1]	74.5	89.7	69.7	93.8	72.9	96.5	67.1	83.4	79.0
Ours	91.9	92.8	84.7	86.5	94.3	92.6	79.7	98.7	89.3

Visualizations

- > GT1,2: ground truth of person 1,2
- ► Baseline1: Ψ_{GO} only, Baseline2: $\Psi_{GO} + \Psi_{TS}$
- > [2]: Fu et. al. CVPR2014

Failure cases

- Different objects with similar appearance
- > Same object with different appearances

Future work

- Use predicted gaze instead of eye tracker
- > Use 3D geometric relation between FPVs