Goal

Discovering objects of joint attention using multiple first－ person videos（FPVs）with points of gaze（PoG）data

Task

＞Temporally localize time intervals of joint attention
＞Spatially segment the object of joint attention

Input：multiple FPVs with PoG data

Output：Joint attention states and object segmentation Dataset
>24 pairs of egocentric videos with gaze data（20～60 secs）
＞ 5 different environments，20＋different objects
－Annotation of joint attention period \＆object segments

Problem Formulation

Given gaze position \boldsymbol{G} ，we aim to infer joint attention state \boldsymbol{J} and segment the object of joint attention (S) ，by minimizing the objective function：
$\Psi\left(S^{(1)}, S^{(2)} \mid G^{(1)}, G^{(2)}\right)=\sum_{p \in\{1,2\}} \Psi_{G O}\left(S^{(p)} \mid G^{(p)}\right)+$

Gaze proximity and objectness

$$
\begin{gathered}
\Psi_{G O}\left(S^{(p)} \mid G^{(p)}\right)=\sum_{t=1}^{T}\left(\lambda_{G O 1} \frac{\left\|C\left(s_{t}^{(p)}\right)-g_{t}^{(p)}\right\|_{2}}{\left|s_{t}^{(p)}\right|^{\frac{1}{2}}}+\lambda_{G O 2}\left(1-\frac{\left|s_{t}^{(p)}\right|}{\left|H\left(s_{t}^{(p)}\right)\right|}\right)\right), \\
C\left(s_{t}^{(p)}\right): \text { Centroid of segment } s_{t}^{(p)},\left|H\left(s_{t}^{(p)}\right)\right| \text { : Area of convex hull of } s_{t}^{(p)}
\end{gathered}
$$

Temporal consistency of segments

$$
\Psi_{T S}\left(S^{(p)}\right)=\lambda_{T S} \sum_{t=1}^{T-1}\left(1-f_{\operatorname{sim}}\left(s_{t}^{(p)}, s_{t+1}^{(p)}\right)\right)
$$

$f_{\text {sim }}$ ：cosine similarity of features extracted from segments

Joint attentionness

$\Psi_{J A}\left(J, S^{(1)}, S^{(2)} \mid G^{(1)}, G^{(2)}\right)=\sum_{t=1}^{T}\left(\lambda_{J A 1} Y\left(j_{t}, s_{t}^{(1)}, s_{t}^{(2)}, \boldsymbol{g}_{t}^{(1)}, \boldsymbol{g}_{t}^{(2)}\right)+\lambda_{J A 2} Z\left(j_{t}\right)\right)$ Y measures visual similarity of segments：
$Y\left(j_{t}, s_{t}^{(1)}, s_{t}^{(2)}, \boldsymbol{g}_{t}^{(1)}, \boldsymbol{g}_{t}^{(2)}\right)=j_{t}\left(1-f_{\operatorname{sim}}\left(s_{t}^{(1)}, s_{t}^{(2)}\right)\right)+\left(1-j_{t}\right) \alpha\left(\boldsymbol{g}_{t}^{(1)}, \boldsymbol{g}_{t}^{(2)}\right)$ α computes visual similarities around gaze region like［1］

$$
Z\left(j_{t}\right)=\left\{\begin{array}{c}
j_{t}, \text { magnitude of global motion }>\delta_{m} \\
0, \text { otherwise }
\end{array}\right.
$$

Temporal consistency of joint attention

$$
\Psi_{T J}(J)=\lambda_{T J} \sum_{t=1}^{T-1}\left|j_{t}-j_{t+1}\right|
$$

［1］Kera et．al．CVPRRW2016

$>$ GT1，2：ground truth of person 1，2
$>$ Baseline1：$\Psi_{G O}$ only，Baseline2：$\Psi_{G O}+\Psi_{T S}$ ＞［2］：Fu et．al．CVPR2014

Failure cases

＞Different objects with similar appearance
＞Same object with different appearances

Future work

$>$ Use predicted gaze instead of eye tracker
$>$ Use 3D geometric relation between FPVs

